2014-2015

Олимпиадная математика :: Догоняющие

18 февраля 2015

Ориентированные углы

Определение. Ориентированным углом между прямыми l и m называется такой угол, на который нужно против часовой стрелки повернуть прямую l, чтобы она стала параллельна прямой m. Обозначается ориентированный угол через $\angle(l,m)$. Углы, отличающиеся на кратное 180 число градусов, считаются равными.

- Свойства ориентированных углов:
 - 1. $\angle(l,m) = -\angle(m,l)$.
 - 2. $\angle(l,m) + \angle(m,k) = \angle(l,k)$.
 - 3. $\angle(AC, CB) = \angle(AD, DB) \Leftrightarrow$ точки A, B, C и D на одной окружности.
 - 4. $\angle(l,m) = \angle(l,k) \Leftrightarrow m \parallel k$.
- **2.** Две окружности пересекаются в точках P и Q. Через P проходит прямая AB, причем A лежит на первой окружности, а B — на второй. Через Q проходит прямая CD, причем C лежит на первой окружности, а D — на второй. Докажите, что $AC \parallel BD$.

Докажите через ориентированные углы.

- Даны окружности S_1 , S_2 и S_3 , проходящие через точку X. Вторая точка пересечения окружностей S_1 и S_2 — точка P, S_2 и S_3 — точка Q, S_3 и S_1 — точка R. На окружности S_1 выбрана произвольная точка A. Вторая точка пересечения прямой AP с S_2 — точка B, прямой AR с S_3 — точка C. Докажите, что B, Cи Q лежат на одной прямой.
- На окружности даны точки A, B, C, D. M —середина дуги AB. Обозначим 4. точки пересечения хорд MC и MD с хордой AB через E и K. Докажите, что точки K, E, C и D лежат на одной окружности.
- 5. Даны 4 прямые общего положения. Всеми возможными способами выкидывается одна из них, и берется описанная окружность оставшегося треугольника. Докажите, что четыре таких окружности проходят через одну точку. Эта точка называется точкой Микеля для этой четвёрки прямых (или для четырёхугольника, образованного этими прямыми).

Прямая Симсона

Пусть ABC — треугольник, ω — его описанная окружность, P — какая-то точка. Проекции точки P на стороны треугольника обозначим соответственно P_A , P_B , P_C .

- **6.** Если P лежит на ω , то P_A , P_B , P_C лежат на одной прямой.
- 7. Если P_A, P_B, P_C лежат на одной прямой, то P лежит на ω .

Ещё задачи.

- **8.** Точку P, лежащую на описанной окружности треугольника ABC, отразили относительно каждой из трёх сторон треугольника. Докажите, что полученные три точки лежат на одной прямой.
- **9.** Точки A, B и C лежат на одной прямой, точка P вне этой прямой. Докажите, что центры описанных окружностей треугольников ABP, BCP, ACP и точка P лежат на одной окружности.
- 10. Точка P движется по описанной окружности треугольника ABC. Докажите, что при этом прямая Симсона точки P относительно ABC поворачивается на угол, равный половине угловой величины дуги, пройденной P.
- 11. Окружность с центром в точке I, вписанная в треугольник ABC, касается сторон AB и BC в точках C_1 и A_1 соответственно. Окружность, проходящая через точки B и I, пересекает стороны AB и BC в точках M и N. Докажите, что середина отрезка MN лежит на прямой A_1C_1 .
- 12. В треугольнике ABC проведена биссектриса AD и из точки D опущены перпендикуляры DB' и DC' на прямые AC и AB; точка M лежит на прямой B'C', причем $DM \perp BC$. Докажите, что точка M лежит на медиане AA_1 .